pydune.physics.dune.bedinstability_1D.complex_pulsation#
- complex_pulsation(k, A, B)[source]#
Dispersion relation as the output of the temporal dune instability:
\[\omega = k^{2}\frac{\mathcal{A} + i\mathcal{B}}{1 + i k}.\]- Parameters:
k (scalar, numpy array) – non dimensional wavenumber \(k\).
A (scalar, numpy array) – hydrodynamic coefficient \(\mathcal{A}\) (in-phase).
B (scalar, numpy array) – hydrodynamic coefficient \(\mathcal{B}\) (in-quadrature).
- Returns:
omega – complex pulsation.
- Return type:
scalar, numpy array
Notes
Note that all quantities are made non dimensional:
length scales by the saturation length \(L_{\rm sat}\).
time scales by \(L_{\rm sat}^{2}/Q_{*\).
Examples
>>> import numpy as np >>> k = np.linspace(0.001, 1, 1000) >>> A, B = 3.5, 2 >>> omega = complex_pulsation(k, A, B)