pydune.physics.dune.bedinstability_1D.complexe_wavenumer#
- complexe_wavenumer(w, A, B)[source]#
Dispersion relation as the output of the spatial dune instability:
avec \(\Delta = \omega(4(\mathcal{A} + i\mathcal{B}) - \omega)\). Note that only the branch \(k_{+}\) corresponds to spatially growing waves in the flow direction.
- Parameters:
w (scalar, numpy array) – non dimensional pulsation \(\omega\).
A (scalar, numpy array) – hydrodynamic coefficient \(\mathcal{A}\) (in-phase).
B (scalar, numpy array) – hydrodynamic coefficient \(\mathcal{B}\) (in-quadrature).
- Returns:
kplus (scalar, numpy array) – \(k_{+}\) branch.
kminus (scalar, numpy array) – \(k_{-}\) branch.
Notes
Note that all quantities are made non dimensional:
length scales by the saturation length \(L_{\rm sat}\).
time scales by \(L_{\rm sat}^{2}/Q_{*}\).
Examples
>>> import numpy as np >>> w = np.linspace(0.001, 1, 1000) >>> A, B = 3.5, 2 >>> kplus, kminus = complexe_wavenumer(w, A, B)