pydune.physics.dune.bedinstability_1D.temporal_growth_rate#
- temporal_growth_rate(k, A0, B0, mu, r)[source]#
Dune instability temporal growth rate - imaginary part of the complex pulsation where \(\mathcal{A} = \mathcal{A}_{0}\) and \(\mathcal{B} = \mathcal{B}_{0} - 1/(r^{2}\mu)\), taking into account slope effects.
- Parameters:
k (scalar, numpy array) – non dimensional wavenumber \(k\).
A0 (scalar, numpy array) – hydrodynamic coefficient \(\mathcal{A}_{0}\) (in-phase).
B0 (scalar, numpy array) – hydrodynamic coefficient \(\mathcal{B}_{0}\) (in-quadrature).
mu (scalar, numpy array) – friction coefficient \(\mu\).
r (scalar, numpy array) – velocity ratio \(u_{*}/u_{\rm d} = \sqrt{\theta/\theta_{d}}\)
- Returns:
sigma – temporal dune growth rate \(\sigma\).
- Return type:
scalar, numpy array
Notes
Note that all quantities are made non dimensional:
length scales by the saturation length \(L_{\rm sat}\).
time scales by \(L_{\rm sat}^{2}/Q_{*\).
Examples
>>> import numpy as np >>> k = np.linspace(0.001, 1, 1000) >>> A0, B0, mu, r = 3.5, 2, 0.63, 2 >>> sigma = temporal_growth_rate(k, A0, B0, mu, r)