pydune.physics#

Modules

pydune.physics.dune

pydune.physics.sedtransport

pydune.physics.turbulent_flow

Functions

A0_approx

Ax_geo

Calculate the hydrodynamic coefficient \(\mathcal{A}_{x}\) using the geometrical model:

Ay_geo

Calculate the hydrodynamic coefficient \(\mathcal{A}_{y}\) using the geometrical model:

B0_approx

Bx_geo

Calculate the hydrodynamic coefficient \(\mathcal{B}_{x}\) using the geometrical model:

By_geo

Calculate the hydrodynamic coefficient \(\mathcal{B}_{y}\) using the geometrical model:

basal_shear

Calculate the basal shear stress over a two dimensional sinusoidal topography for an arbitrary wind direction.

cosd

Cosine element-wise np.cos with an input in degree.

cubic_transport_law

Cubic transport law \(q_{\rm sat}/Q = \Omega \sqrt{\theta}(\theta - \theta_{\rm th})\), from Duràn et al. 2011.

mu

eta = k z, vertical coordinate [Adi.] eta_0 = k z0, hydrodynamic roughness [Adi.] Kappa, Von Karman constant (typically 0.4)

mu_prime

derivative of the ratio \(U(z)/u_{*}\) following the law of the wall:

quadratic_transport_law

Quadratic transport law \(q_{\rm sat}/Q = \Omega \sqrt{\theta_{\rm th}}(\theta - \theta_{\rm th})\), from Duràn et al. 2011.

quartic_transport_law

Quartic transport law \(q_{\rm sat}/Q = \frac{2\sqrt{\theta_{\rm th}}}{\kappa\mu}(\theta - \theta_{\rm th})\left[1 + \frac{C_{\rm M}}{\mu}(\theta - \theta_{\rm th})\right]\) from Pähtz et al. 2020.

sind

Trigonometric sine using np.sin, element-wise with an input in degree.

solve_turbulent_flow

This function solves the perturbation of the flow induced by a sinusoidal bottom in various configurations.