pydune.physics#
Modules
Functions
Calculate the hydrodynamic coefficient \(\mathcal{A}_{x}\) using the geometrical model: |
|
Calculate the hydrodynamic coefficient \(\mathcal{A}_{y}\) using the geometrical model: |
|
Calculate the hydrodynamic coefficient \(\mathcal{B}_{x}\) using the geometrical model: |
|
Calculate the hydrodynamic coefficient \(\mathcal{B}_{y}\) using the geometrical model: |
|
Calculate the basal shear stress over a two dimensional sinusoidal topography for an arbitrary wind direction. |
|
Cosine element-wise |
|
Cubic transport law \(q_{\rm sat}/Q = \Omega \sqrt{\theta}(\theta - \theta_{\rm th})\), from Duràn et al. 2011. |
|
eta = k z, vertical coordinate [Adi.] eta_0 = k z0, hydrodynamic roughness [Adi.] Kappa, Von Karman constant (typically 0.4) |
|
derivative of the ratio \(U(z)/u_{*}\) following the law of the wall: |
|
Quadratic transport law \(q_{\rm sat}/Q = \Omega \sqrt{\theta_{\rm th}}(\theta - \theta_{\rm th})\), from Duràn et al. 2011. |
|
Quartic transport law \(q_{\rm sat}/Q = \frac{2\sqrt{\theta_{\rm th}}}{\kappa\mu}(\theta - \theta_{\rm th})\left[1 + \frac{C_{\rm M}}{\mu}(\theta - \theta_{\rm th})\right]\) from Pähtz et al. 2020. |
|
Trigonometric sine using |
|
This function solves the perturbation of the flow induced by a sinusoidal bottom in various configurations. |